

Bufferbloat and Beyond

Speeding up the edge of the internet
Making for better voip and videoconferencing

Dave Taht, CEO, TekLibe, LLC
Dave.taht@gmail.com

Intro Shapiro

● Dave Taht’s Bufferbloat Project project members have been
working on reducing network latency, and improving the internet,
with new algorithms, open source code, and IETF standards, for
over 12 years.

● Today he’s going to try and explain a few of the their algorithms
many of you already have, in your devices, running on each and
every packet, that have made it more possible for quality
videoconferencing, among other things.

● Without further ado, Doctor Dave Taht:

Thx

In my coming talk we are going to try and tackle some really
difficult networking topics like cryptography, the importance of
Round Trips (otherwise known as RTT) – congestion control -
how web traffic and videoconferencing traffic have trouble co-
existing due - “bufferbloat” - how many of you have hear of
that? “network qeueing delay” - which if we can somehow fix
in the coming years, will lead to a better internet for everyone.

Hands

Could I get a show of hands? Anyone here ever heard of “Fair
Queuing”? “Active Queue Management?”

How about more basic stuff? WEBRTC?

Those of you not paying attention, please raise your hands?

Stage call

● I’d like to bring some brave volunteers up to the stage
● [arrive, get stuff setup]

I’m going to start with the simplest most basic thing all of you are
familiar with. First we’re going to describe how voice traffic used
to work, and how it works after it got packetized.

And then... We’re going to simulute loading a simple, basic,
1993-era web page and then hopefully get to explaining some of
the big concepts I just mentioned.

Connect M-S-C-D

Up until the 1960s, when making a telephone call, the analog
signal was transmitted over wires via a “circuit switched”
network, that were plugged in by various operators. And then
your sound impulses were translated into a “waveform”, and
carried across that kind of “network”. Operator, Texas institute
of Technology and Science calling MIT”

 “Dallas Operator Calling Boston” “Boston Operator Calling
MIT” [plug in wires]

We Wave across the room

Gradually we automated this task, but… it was a lot of wires that
had to get plugged into each other to make a cross country call.

After you got the call setup… [toss wires and get in line] you
could talk to someone clear across the country… [start transit
wave]... the sound of your voice was translated into an analog
waveform.

S: Isn’t C: That D: Amazing!!

Packetization

And we learned that basically, every 20ms, we could send a
tiny fragment of a voice, over what was then called “The
arpanet”, and reassemble them at the end.

[Traverse…] D: Isn’t S: That C: Amazing!

Packet Loss

And we also learned that packet loss – for any reason, on such
large chunks of data as large as a verbal word

The three start to traverse the stage again [Grab the S out of
line] -

D: Isn’t C: Amazing!

Loss recovery

… Packet loss was a new and real problem… and we have now
spent many decades trying to compensate for packet loss, and
jitter, and delay, and for that matter, reordering – one packet
from the stream might take a detour around the moon like

S: That!

Bandwidth

● A much better way of thinking about “Bandwidth” is not “megabits
per second”, but steady kilobits per millisecond.

● That’s 1000 times finer granularity than how humans describe it,
but when you slice data up into chunks that small you can
compensate for lost bits of it.

● So instead of transmitting whole words, like “Isn’t that amazing!”
we transmit audio bits at really fine intervals usually spaced 20
milliseconds apart, and if you lose one one you might hear a small
disssssstortion of the audio but that’s it.

Videoconferencing

● [Team Hand Dave Ring]

Videoconferencing is very similar. You take a picture, then
another picture, then another picture. So long as the intervals
between “frames” are constant, and very very small and have
minimal packet loss that can be compensated for, your brain
can compensate for most of the weirdness that happens.

Bandwidth again

● I want to go back to something important – for packetized
voice and videoconferencing to work well, you need:

● Consistent, smooth, nearly lossless deliverery not of
megabits per second, but of kilobits per millisecond.

Web Traffic

● [Team get Clubs setup]

The requirements of web traffic are very different from this. All
we care about really is that the page load completes as fast
as possible - typically under 3 seconds. Movie streaming is
similar also, you typically download 10 seconds of a movie, or
more, as fast as you can - before starting to play it.

You don’t need, smooth, consistent bandwidth in kilobits per
millisecond, but as much bandwidth as you can grab, quickly.

Loading a web page

Here we have the DNS server. Over here is the “SERVER” that has
the content you want, and you, sir, are the client. Let’s LOAD a web
page. First up, we need to translate a domain name, like
www.ttivanguard.com into a number, called an IP address. So we
throw a packet to a DNS server which translates that name into a
number, and it sends the number back to the client. The client
attempts to connect to that server’s IP address through “the cloud”.

Through a bunch of tubes, interconnected via routers (funnels).

The download

And after that, we start downloading the various objects – text, pictures,
formatting in the web page. We might need to make a few more DNS
queries along the way, or connect to other servers in the cloud…

And we have this nearly continuous exchange of packets, or in this case
clubs, transfering more and more of the data… [me slowing down so the
audience starts getting the joke], from all the sources and sinks… get to 6
clubs… until can be fully displayed.

STOP, drop clubs, dive for papers

WALLA! YOU’VE GOT YOUR WEBPAGE!

Grab papers from stage

● Rick Astley

Intro

Ladies and gentlemen, the mit juggling club!

MIT’s work on networking is unparalleled, and it’s not co-
incidence that in the computer science field, jugglers can be
found, everywhere.

Jaimie here is studing computer science at Hahhvard, Vasu,
is studying “computer engineering” at MIT, and joshua, when
not juggling professionally, moonlights as a network engineer
at a major search engine provider.

W/MIT juggling club

● They are going to help explain the more difficult topics
coming up
– Cryptography
– Internet Congestion control
– Bufferbloat
– Fair Queuing and Active Queue Management (AQM)

Cryptography

The web evolved. Things started to get more complicated after 1993 with the introduction
of cryptography. In addition to the setup steps you just witnessed [repeat], we had to add
two more “round trips” to it.

C: “nonsense” S: “nonsense”

To negotiate a secure channel for the conversation

C: “nonsense” S: “nonsense”

Crypto 2

M: “This is how cryptography really works” C: “nonsense”, toss, S “This is
how cryptography really works”

M: “You have to negotiate a secure connection”: C: “nonsense”, toss, S “You
have to negotiate a secure connection”

M: “Then encrypt the data for each and every packet. C: nonsense, toss, S:
Then encrypt the data for each and every packet.”

M: “The importance of cryptography is that a man in the middle cannot
understand what’s going on” - S: nonsense, toss, D: intercept, repeat numbers
dubiously, then toss.

In unison: “Isn’t that amazing!”

Blind

But it’s even more complicated than this.

Because in the case of packets, the client and servers… are
separate by an unknown distance… they might be really far
apart… or closer together… and we never know at the outset
what the actual, current bandwidth between them is.

The clients and servers are essentially… BLIND.

[whip out blindfolds] [D: starts to juggle 3 balls]

Round Trips
While you can measure the amount of time it takes for a reply to
come back, you don’t know if that was the network, the server, the
cryptotgraphy or the queuing delay that took the time. There’s
actually three laws for how to manage this sort of thing – BDP, srqrt
BDP times the number of flows, and one called ‘Power”. And
despite 50 years of internet development we still don’t know which
of these laws is correct.

So instead of using these “laws” for the purpose of analogy, we’re
going to use an entirely different law. Gravity.

Height of the queue

Pay no attention to the balls themselves, ok? [Use a ruler]

 Watch the hands. They are moving stuff from hand to hand at
roughly the same rate, no matter if it’s 3 balls or 4, or 5.

That is the amount of needed “buffering” for this trick, but in
general the same amount of data is being transferred. It’s just
going higher every time. You just have more balls in the air.

The role of packet loss

● A new flow enters the link
● [Toss from one to the other] The height of the flow here

represents the minimum amount of “buffering” required to
ensure we defeat the law of gravity.

● [Toss from another to the one]
● So long as packet loss is used to control how much

bandwidth is found and used!

Probing for bandwidth

● [Switch to pins]
● I gotta introduce a dose of reality into this. What actually

happens on a web download, once it gets going, is first
two GIANT data packets are sent over TCP, and then a
really really tiny packet is sent back, called an
acknowledgement. That tiny packet contains a list of what
was sucessfully received so far.

● [Toss two pins]

QuackKnowledgements

Dave: What’s that?
CLIENT: It’s a quacknowlegement.
:audience boos:
Dave takes the duckie and walks back to SERVER
That… quackknowlegment says YES I received the data, please
send more. And something kind of non-intuitive happens here, we
double the number of packets we sent to probe for more bandwidth,
and the distance. Sending 4 packets! [send 4]

Collapse

● And we get 2 more “Quackknowlegments” back…
● And then we send 8 more packets!
● [collapse]
● Most traffic is governed by the number of round trips required for the

percieved bandwidth. And what a packet loss indicates in this instance
is two things -

The quackknowlegement, in this case says two things – please retransmit the
lost packets, and slow down so the reciever can handle the data you are
sending.

Packet loss is actually essential

This idea is fundamental to the structure of the internet. We probe
for more bandwith by throwing ever more packets, and when one is
lost, the sender is signaled to slow down, and to fill in the missing
data.

[juggle for a while]

Juggling

If you were to imagine the internet consisting of trillions of jugglers,
all obeying these two simple rules – again, lose a packet, slow
down, retransmit, slowly increase the speed, lose a packet, slow
down, retransmit… sending these not through the air but threw a
series of tubes, and funnels designed by a madman, you wouldn’t
be too far off.

Bufferbloat

And the crux of the problem I’ve beent trying to explain for the last half
hour… is how hard and yet how important that is, in the face of
web/movie/file transfer traffic trying to coexist.

Too few packets in flight means your web/movie/file transfer traffic can take
too long, and too many packets in flight, is bad for voice and
videoconferencing traffic. Packet loss is needed to keep the queues short,
but excessive loss, undesirable for other traffic.

Up until 2010 or so, we were making web traffic “better” by really, really
overbuffering too many packets in flight, and destroying the capability to do
interactive traffic simultaneously.

Bandwidth changes

And the network is constantly changing up and down, not just with
flows entering, probing and leaving the link, but with wifi and
wireless where if you move a fraction of an inch, the available
bandwidth can change by a lot.

I entered this mad scene in 2008, when applications that I relied
upon, like skype, were acting up periodically, and I didn’t know
why. It wasn’t until jim gettys identified the root cause – really
execessive amounts of buffering – that I understood.

Overbuffering

The amount of buffering we observe on the internet today is very
often still excess of what actually needed, sometimes measured in
seconds – too much even for web traffic!

We started developing, and deploying new algorithms to manage
buffering back then, and many are widely deployed, but there’s still
billions of devices left to upgrade.

Age

It’s been a very long 10 years.

I’m really happy that we developed better end to end congestion control
algorithms such as BBR and packet pacing, and we’ve also made great
strides in increasing bandwidth, and in improving the routers to be more
intelligent as to how to manage the flows of different kinds of packets.

But we’re not done yet. The solutions are unevenly distributed. But
maybe henceforth when you see someone video distort, or freeze
you might be able to explain a little about why, and how to fix it.

FQ and AQM

In the time remaining, I’d like to try and describe how two of the
algorithms we’ve developed actually work to assist the network –
enforced at the router – work together to make it possible for both
videoconferencing and file transfer traffic.

Close

● Setup rings, get on unicycle – jaime here is emulating a smarter home router
● On the bottleneck router...
● Fair queuing makes the low rate voice and videoconferencing flows

interleave well with the fatter web traffic.
● Active queue management, attempts to identify the big fat flows, probing for

bandwith, by either forcing a dropped packet
● [switch color ring]
● Or, in this case by marking a packet with an explicit congestion notification

(ECN) early enough to keep the probing occilations under control.

Thanks Everyone!

● Huge thanks to our MIT jugglers -
– Vasu!
– Joshua!
– Jaimie!

● For coming out today!
● And a big thanks to Len kleinrock for all the queue theory

I’ve mangled today.

My current problems

● Trying to get NTIA/FCC to mandate new and old ISP services get better
FQ+AQM algorithms enabled by default

● NTIA filing on “bufferbloat”
● Also trying to get Network Neutrality people to intuitively understand

congestion control and these algorithms
● Trying to get more vendors to ship newer code with the algorithms

available.
● Getting ISPs to enable them for customers automatically
● Trying to raise awareness of how the internet really works, for everyone

Bufferbloat Still exists on
everything

● DSL is “slow” not just due to low bandwidth, but seconds of buffering
● Cablemodems now have DOCSIS 3.1 with the PIE AQM, but only comcast has

deployed it
● We can fix these with just an “upgrade in place” on many existing routers today
● 5G folk brag about lowered latency but also have seconds of buffering
● Wifi, although fixed for 5 chipsets with default APIs in the linux kernel… in 2016
● And even new services are getting buffering wrong for a mix of

videoconferencing and file transfer traffic.

Starlink 2/25/22

Bufferbloat.net Resources

● https://bufferbloat-and-beyond.net
● IETF AQM working groupe
● The “Bloat” mailing list
● RFC8290
● OpenWrt “Smart Queue Management”
● “Optimize for videoconferencing and gaming” - eero and google
● https://www.patreon.com/dtaht

https://bufferbloat-and-beyond.net/
https://www.patreon.com/dtaht

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

